Abstract

AbstractAgBr acts as a good sensitizer for titanium oxide, hence TiO2–AgBr nanoparticles exhibit high photocatalytic activity which helps decompose methyl orange under visible light irradiation. Methyl orange is a chemical compound that is hard to degrade and has high stability. It is photoreactive and can capture photons from the sun and is highly used as a light harvester in solar cells, hence, it is used in solar applications. In view of this, the present article deals with the analysis of heat transfer in a multilayer flow of two immiscible nanofluids in a vertical channel that finds application in the fields of solar reactors, electronic cooling, and so on. The mathematical model involving the effect of thermal radiation and the presence of heat source is in the form of a system of ordinary differential equations. This system of equations is simplified using the differential transform method‐Padé approximant and the resulting equations are solved algebraically. It is observed that the temperature of the coolant does not reach its saturation point faster due to the presence of different base fluids that differ in their thermal conductivity. This helps in maintaining the optimum temperature of the system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.