Abstract

In this paper an implicit numerical method designed for nonlinear degenerate parabolic equations is proposed. A convergence analysis and the study of the related computational cost are provided. In fact, due to the nonlinear nature of the underlying mathematical model, the use of a fixed point scheme is required. The chosen scheme is the Newton method and its convergence is proven under mild assumptions. Every step of the Newton method implies the solution of large, locally structured, linear systems. A special effort is devoted to the spectral analysis of the relevant matrices and to the design of appropriate multigrid preconditioned Krylov methods. Numerical experiments for the validation of our analysis complement this contribution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.