Abstract
Due to their capacity to simulate intricate dynamic systems containing memory effects and non-local interactions, fractional differential equations have attracted a great deal of attention lately. This study examines multi-term fractional differential equations with variable type delay with the goal of illuminating their complex dynamics and analytical characteristics. The introduction to fractional calculus and the justification for its use in many scientific and technical domains sets the stage for the remainder of the essay. It describes the importance of including variable type delay in differential equations and then applying it to model more sophisticated and realistic behaviours of real-world phenomena. The research study then presents the mathematical formulation of variable type delay and multi-term fractional differential equations. The system’s novelty stems from its unique combination of variable delay, generalized multi terms fractional differential operators (n and m), and integral implicit parameters, and studying the stability of the the newly formulated system as compared to the work in the existing literature. While the variable type delay is introduced as a function of time to describe instances where the delay is not constant, the fractional order derivatives are generated using the Caputo approach. The existence, uniqueness, and stability of solutions are the main topics of the theoretical analysis of the suggested differential equations. In order to establish important mathematical features, the inquiry makes use of spectral techniques, and fixed-point theorems. The study finishes by summarizing the major discoveries and outlining potential future research avenues in this developing field. It highlights the potential contribution of multi-term fractional differential equations with variable type delay to improving the control and design of complex systems. Overall, this study adds to the growing body of knowledge in the field of fractional calculus and provides insightful information about the investigation of multi-term fractional differential equations with variable type delay, making it pertinent for academics and practitioners from a variety of fields.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.