Abstract
This work presents a novel method of simplifying multi-converter systems containing complex grid-forming and grid-following controllers for stability analyses. Analysis is conducted via the equivalent converter output impedance. Important points for impedance-based stability analysis of larger networks are considered, including impedance rotations, proper combination of sources and correctly obtaining a minimum system realisation with appropriate tolerances. The proposed method is used to conduct a sensitivity analysis of different grid-forming and grid-following converter control parameters to determine tuning recommendations for the modern electricity network. To achieve this, complex control structures including power/voltage control, negative sequence regulation and synchronous machine emulation are included. Network stability is found to be sensitive to current control, active power control and frequency-based components such as PLLs. However, voltage control exhibits a smaller effect on stability for a range of short circuit ratios. Some recommendations are provided on when the simplified method can be utilised and how to ensure correct application.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.