Abstract

Transient two-dimensional model of the growth of BGO crystal by heat exchanger method has been developed. A finite element method with nonorthogonal mapping technique for the solution of the moving boundary problem is developed where the melt/solid interface shape changes from hemispherical to planar. The moving boundary problems for the melt/solid interface location and the temperature field were solved by two mapping rule method which enables the computation of interface shape changing from hemispherical to planar. The maximum deflection of interface is shown when the melt/solid interface meets the corner of crucible. As the excess heating temperature and the heat exchanger temperature were increased, more growth time for whole process is required but the quality of BGO crystal may be improved. The ratio of the height to the radius of crucible hardly affects the deflection of BGO melt/solid interface when it is greater than 1.5. As the cooling zone radius is decreased, maximum deflection is decreased. The heat transfer between the crucible and the heating element should be suppressed to maximize planarity of the interface shape.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.