Abstract

Arthrospira platensis is a kind of filament cyanobacteria, which is mainly helical with a few linear. The shape of the filaments, such as the length and the pitch, may change with the changes in the environment. Natural Arthrospira platensis FACHB793 is linear, although it has become helical due to a mutation introduced in the process of cultivation. To study the molecular mechanism responsible for the morphological changes of the filaments, two samples were isolated from a natural mutant of Arthrospira platensis FACHB793, which were helical shaped (named A793_H) and linear shaped (named A793_L). Transcriptome sequencing, GO and KEGG enrichment analysis showed that the expression of genes related to or involved in peptidoglycan biosynthesis, beta lactam resistance, photosynthetic antenna protein expression, bacterial secretion, and ABC transporter activity changed between the two samples. The expression of murE and murG in the peptidoglycan biosynthesis pathway and that of oppD in beta lactam resistance were all down-regulated in the helical filaments, which may be related to the longer cell wall and higher peptidoglycan synthesis in linear filaments than helical filaments. In helical filaments, the up-regulation of tatC gene expression in bacterial secretion may be related to the secretion of peptidoglycan degrading enzymes, which may help to change the shape from linear to helical. Moreover, apcA and cpcA in photosynthetic antenna protein expression and nrt and nirA in nitrogen metabolism were all down regulated in the helical filaments, which may be due to the deformed shape of A. platensis FACHB793, resulting in decreased photosynthetic activity in helical filaments. This research provides a foundation for elucidating the possible morphogenetic mechanism of Arthrospira platensis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call