Abstract

The photochemical reaction of a molecule leads to a change in the position of its nuclei that can be harnessed to perform mechanical work. Photomechanical materials use this effect to act as light-powered actuators. In this paper, a one-dimensional model based on coupled harmonic potential energy surfaces is developed to describe the photomechanical response of a molecule. This model generates predictions that are qualitatively consistent with standard mechanochemistry models for ground state rate reactions. To analyze the photomechanical process, excited state dynamics like photon absorption and relaxation are included. The model allows us to derive analytical expressions for the work output, blocking force, and absorbed photon-to-work efficiency. The effects of nonadiabatic electronic coupling, unequal frequency potentials, and the cycling efficiency are also analyzed. If the starting state is the stable (lower energy) isomer, it is possible to attain photon-to-work efficiencies up to 55.4%. If initial state is higher in energy, for example a metastable isomer, then one-way efficiencies > 100% are possible due to the release of stored potential energy. Photomechanical materials can be competitive with photovoltaic–piezoelectric combinations in terms of efficiency, but current materials will require substantial improvement before they can approach the theoretical limits.Graphical abstract

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call