Abstract

AbstractMolecular orientation in amorphous organic semiconducting thin‐film devices is an important issue affecting device performance. However, to date it has not been possible to analyze the “distribution” of the orientations. Although solid‐state NMR (ssNMR) spectroscopy can provide information on the “distribution” of molecular orientations, the technique is limited because of the small amount of sample in the device and the low sensitivity of ssNMR. Here, we report the first application of dynamic nuclear polarization enhanced ssNMR (DNP‐ssNMR) spectroscopy for the orientational analysis of amorphous phenyldi(pyren‐1‐yl)phosphine oxide (POPy2). The 31P DNP‐ssNMR spectra exhibited a sufficient signal‐to‐noise ratio to quantify the distribution of molecular orientations in amorphous films: the P=O axis of the vacuum‐deposited and drop‐cast POPy2 shows anisotropic and isotropic distribution, respectively. The different molecular orientations reflect the molecular origin of the different charge transport behaviors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.