Abstract

Aggregation occurs through hydrophobic interactions when a polypeptide chain refolds in non-native states or when genetic variants of biologically active proteins assume inappropriate conformations, as observed in the case of dysfunctional serpins. Here, using the molecular chaperone BiP from bovine liver microsomes, we characterized the hydrophobic nature of the peptide segment which is considered to be a site required for aggregation among a non-inhibitory serpin ovalbumin in a heat-denatured state. Screening of the peptide scan for binding of BiP showed that BiP-binding sites are mostly buried in the folded ovalbumin. When ovalbumin was heat-denatured, the denatured protein was recognized by the antibody that reacts with the hydrophobic surface of the amino-terminal segment of ovalbumin. This antibody significantly suppressed the binding of BiP to denatured ovalbumin. BiP also bound the immobilized peptide in an ATP-dependent manner and the peptide stimulated the ATPase activity of BiP with a Km of 165 microM and a Vmax of 0.4 nmol/min per milligram. Measurement of surface plasmon resonance showed that the peptide had a Kd of 0.52 microM by BiP, lower than that for RCMLA (Kd = 1.1 microM) and even lower than that of the peptide P10K, PLSRTLSVAAKK, (Kd = 21 microM). These results demonstrate that the aggregation-prone site on heat-denatured ovalbumin has almost the same hydrophobic nature of interacting with the molecular chaperone BiP as the conventionally known peptides that bind to the Escherichia coli chaperone DnaK.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.