Abstract

In disaster scenarios, where toxic material is leaking, gas source localization is a common but also dangerous task. To reduce threats for human operators, we propose an intelligent sampling strategy that enables a multi-robot system to autonomously localize unknown gas sources based on gas concentration measurements. This paper discusses a probabilistic, model-based approach for incorporating physical process knowledge into the sampling strategy. We model the spatial and temporal dynamics of the gas dispersion with a partial differential equation that accounts for diffusion and advection effects. We consider the exact number of sources as unknown, but assume that gas sources are sparsely distributed. To incorporate the sparsity assumption we make use of sparse Bayesian learning techniques. Probabilistic modeling can account for possible model mismatch effects that otherwise can undermine the performance of deterministic methods. In the paper we evaluate the proposed gas source localization strategy in simulations using synthetic data. Compared to real-world experiments, a simulated environment provides us with ground truth data and reproducibility necessary to get a deeper insight into the proposed strategy. The investigation shows that (i) the probabilistic model can compensate imperfect modeling; (ii) the sparsity assumption significantly accelerates the source localization; and (iii) a-priori advection knowledge is of advantage for source localization, however, it is only required to have a certain level of accuracy. These findings will help in the future to parameterize the proposed algorithm in real world applications.

Highlights

  • This work is driven by the following research questions: If we know that our model assumptions may be wrong, what do we gain if we tell our system that the model is uncertain? How does source localization perform in case of over- or under-confidence in our model and assumptions? In this paper we study those aspects in simulations

  • Our goal is to get an empirical understanding of the different parameters and to make sure that the proposed exploration strategy is able to find the gas sources

  • We propose a model-based exploration strategy for a multi-robot system

Read more

Summary

Introduction

Recent developments of small Unmanned Aerial Vehicles (UAVs) enable end-users and researchers to make use of them for exploration and monitoring missions In this context, gas exploration—the mapping of spatially distributed gas concentrations and finding potential sources—is of special interest. In many possible applications, such as in case of chemical, biological, radiological and nuclear (CBRN) events and disaster relief scenarios, increased concentrations may be of toxic and dangerous nature. When it comes to finding the sources or leaks of those toxic materials, robots have a distinct advantage with respect to safety aspects compared to human operators. For civil protection agencies it is Sensors 2019, 19, 520; doi:10.3390/s19030520 www.mdpi.com/journal/sensors

Objectives
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call