Abstract

A new modification of the integral equation method using an iteration technique with "accelerating" parameters is presented to solve the problem of guided-mode scattering from an abruptly ended asymmetrical slab waveguide. The optimal choice of the parameters is shown to be closely connected with the variational principle. The electric-field distribution at the terminal plane, the reflection coefficient of the guided mode, and the far-field radiation pattern are computed. Numerical results are presented for several cases of abruptly ended waveguides, including the systems with constant and variable profiles of the refractive indices. The phenomenon of the radiation pattern rotation is examined in detail.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.