Abstract
For large-scale offshore wind turbine rotating blades (NREL 5MW), the theoretical model of vibration due to fluid-structure interaction (FSI) is established, and the basic equations for modal analysis are given. Based on ANSYS workbench platform, the blade modal characteristics at different rotating speeds are analyzed, and further research on dynamic stability is carried out. The results indicate that the FSI and the blade rotation have a great influence on modal frequencies, which increase with the rotating speed of the blade under FSI. When the frequency of the periodic wind speed is close to the first-order natural frequency of the blade, both the maximum flapping displacement and the maximum von Mises stress increase with time, and the vibration divergence appears. At the safe tower clearance of 4.50 m, the critical value of the blade maximum von Mises stress shows a linear upward trend with the increase of the elasticity modulus, which provides technical references for optimization design and safe operation of wind turbine blades.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Offshore Mechanics and Arctic Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.