Abstract
This work presents a Deep Reinforcement Learning algorithm to control a differentially driven mobile robot. This study seeks to explain the influence of different definitions of the environment with a mobile robot on the learning process. In our study, we focus on the Reinforcement Learning algorithm called Deep Deterministic Policy Gradient, which is applicable to continuous action problems. We investigate the effectiveness of different noises, inputs, and cost functions in the neural network learning process. To examine the feature of the presented algorithm, a number of simulations were run, and their results are presented. In the simulations, the mobile robot had to reach a target position in a way that minimizes distance error. Our goal was to optimize the learning process. By analyzing the results, we wanted to recommend a more efficient choice of input and cost functions for future research.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.