Abstract
The two-stroke engine has the great potential for aggressive engine downsizing and downspeeding because of its double firing frequency. For a given torque, it is characterized with a lower mean effective pressure and lower peak in-cylinder pressure than a four-stroke counterpart. In order to explore the potential of two-stroke cycle while avoiding the drawbacks of conventional ported two-stroke engines, a novel two-stroke boosted uniflow scavenged direct injection gasoline engine was proposed and designed. In order to achieve the stable lean-burn combustion in the boosted uniflow scavenged direct injection gasoline engine, the mixture preparation, especially the fuel stratification around the spark plug, should be accurately controlled. As the angled intake scavenge ports produce strong swirl flow motion and complex transfer between the swirl and tumble flows in the two-stroke boosted uniflow scavenged direct injection gasoline engine, the interaction between the in-cylinder flow motions and the direct injection and its impact on the charge preparation in the boosted uniflow scavenged direct injection gasoline engine are investigated in this study by three-dimensional computational fluid dynamics simulations. Both the single injection and split injections are applied and their impact on the mixture formation process is investigated. The start of injection timing and split injection ratio are adjusted accordingly to optimize the charge preparation for each injection strategy. The results show that the strong interaction between the fuel injection and in-cylinder flow motions dominates the mixture preparation in the boosted uniflow scavenged direct injection gasoline engine. Compared to the single injection, the split injection shows less impact on the large-scale flow motions. Good fuel stratification around the spark plug was obtained by the late start of injection timings at 300 °CA/320 °CA with an equal amount in each injection. However, when a higher tumble flow motion is produced by the eight scavenge ports’ design, a better fuel charge stratification can be achieved with the later single injection at start of injection of 320 °CA.
Highlights
The engine downsizing and downspeeding technologies have been developed in automotive industry to reduce CO2 emissions and achieve higher engine efficiency
The impacts of the initial in-cylinder flow motions, enabled by an eight scavenge ports’ design, on the charge preparation are reported in section ‘‘Effect of initial in-cylinder flow motion.’’
As the decreased fueling mass decreases the droplet momentum at each injection, the fuel vapor cannot travel to the lower edge of the spark plug under the impact of the strong tumble flow motion formed by eight scavenge ports
Summary
The engine downsizing and downspeeding technologies have been developed in automotive industry to reduce CO2 emissions and achieve higher engine efficiency. In order to understand the interaction between fuel injections and in-cylinder flow motions and its impact on controlling the fuel–air ER distributions, Figure 15 shows the cross-sectional views of the flow fields with the split injections and single injection, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.