Abstract
This paper proposes and analyzes two fully discrete mixed interior penalty discontinuous Galerkin (DG) methods for the fourth order nonlinear Cahn--Hilliard equation. Both methods use the backward Euler method for time discretization and interior penalty DG methods for spatial discretization. They differ from each other on how the nonlinear term is treated; one of them is based on fully implicit time-stepping and the other uses energy-splitting time-stepping. The primary goal of the paper is to prove the convergence of the numerical interfaces of the DG methods to the interface of the Hele--Shaw flow. This is achieved by establishing error estimates that depend on $\epsilon^{-1}$ only in some low polynomial orders, instead of exponential orders. Similar to [X. Feng and A. Prohl, Numer. Math., 74 (2004), pp. 47--84], the crux is to prove a discrete spectrum estimate in the discontinuous Galerkin finite element space. However, the validity of such a result is not obvious because the DG space is not a subspa...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.