Abstract

This research looks at the stagnation point flow of MHD Al2O3-Cu/H2O hybrid nanofluid against a permeable, vertically extending surface that uses thermal radiation and how different models of thermal conductivity affect it. This study is unique because it looks at how changes in thermal conductivity, mixed convection, and the slip velocity of hybrid nanofluids affect the stretching surface. It also looks at how changes in temperature, skin-friction coefficient, Nusselt number, and velocity affect convective thermal boundary conditions. With the use of boundary layer approximations, the complicated system of PDEs is simplified. The dimensionality of these PDEs and the boundary conditions they include are eliminated by applying certain modifications. Combining a local non-similarity approach up to the second truncation level with MATLAB's built-in finite difference code (bvp4c), one can obtain the results of the updated model. The research demonstrates and analyzes the impact of different factors on fluid flow and heat transfer characteristics in the studied flow situations. This is done by comparing the computed data with available literature and presenting the findings in graphical form. Tables are generated to present the numerical fluctuations of the drag coefficient and Nusselt number. This study shows how important thermal conductivity is in the mixed convection of hybrid nanofluids and looks into what happens when the thermal conductivity parameter is changed. Significantly, an augmentation in this parameter results in an elevation in the temperature distribution of the hybrid nanofluid while simultaneously reducing the rate of heat transfer across various models. Furthermore, increasing the nanoparticle volume fraction parameter leads to higher temperature and Nusselt number profiles while reducing skin friction. The mixed convection parameter has a notable impact on increasing the friction coefficient on the stretched vertical surface. However, because these elements function as regulating variables, it decreases when the magnetic, mass suction, and velocity slip parameters are present. The results also demonstrate notable discrepancies in the mean Nusselt values generated by various thermal conductivity models. According to the analysis, the Hamilton-Crosser model has the lowest average Nusselt numbers, followed by the Yamada-Ota model and the Xue model, in that order.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.