Abstract

Microcystin -leucine-arginine (MC-LR), produced by freshwater cyanobacteria, is a potential pancreatic β-cell toxin. In this study, the function of the mouse pancreatic β-cell line, MIN6, was evaluated after MC-LR exposure, and the underlying molecular mechanisms were explored. Exposure to MC-LR for 24 h was found to inhibit cell viability and impair insulin secretion. Such findings indicate that β-cell function would be impaired following MC-LR treatment. The microarray results revealed altered miRNA and mRNA expression profiles that might be responsible for the abnormal function of MIN6 cells. Further, miRNA-gene network analysis demonstrated that miR-29b-3p, miR-6967–5p, miR-3473, miR-7061–5p, Xkr4, Tmem178b, Scp2, Ypel2, and Kcnj11 are key miRNAs and genes in the MC-LR-induced MIN6-cell toxicity. The altered expression levels of several miRNAs (e.g., miR-320–5p, miR-770–5p, miR-99a-3p, and miR-375–5p) and genes (e.g., Pklr and Gpd2) involved in insulin secretion or the onset of diabetes were also identified in MIN6 cells after treatment with MC-LR. Collectively, these findings provide evidence of the toxic effects of MC-LR on β-cells and the underlying molecular mechanisms of its glycometabolism toxicity. MCs may thus possibly play an important role in the development of diabetes mellitus in humans.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.