Abstract

Aluminum oxide (Al 2O 3) particles from the exhaust of the space shuttle were collected from the shuttle column cloud immediately after the launch of STS-61A on 30 October 1985. The participates were collected on Teflon filters during a tight descending aircraft spiral maneuver over the altitude interval of 7.6-4.6 km. Scanning electron microscope (SEM) examination of the particles revealed that they were virtually all spherical and ranged in diameter from about 0.1 μm to 10 μm. Particles of < 0.1 μm in diameter were not readily visible in the SEM photomicrographs; however, such particles would not be captured efficiently on the Teflon filters used. Results from energy dispersive analysis by X-ray (EDAX) and electron spectroscopy for chemical analysis (ESCA) confirmed that the particles were predominantly composed of Al and O 2. A particle size distribution was determined from the Al 2O 3 samples. The distribution was bimodal, with one observed peak centered near 2.0 μm. The data indicated the existence of another mode centered at a diameter of < 0.3 μm, but could not be accurately located because our technique cut off at diameters of < 0.1 μm. A mass median diameter of slightly < 2 μm was determined. The collection was evaluated for ice nucleation activity, using the filter technique with a static vapor-diffusion chamber. Only a small fraction (about 1:10 6) of active ice nuclei were determined among the Al 2O 3 particulates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.