Abstract
Diabetes is often considered a vascular disease due to its impact on blood vessels, it is a complex condition with various metabolic and autoimmune factors involved. One of the long term comorbidities of diabetes includes microvascular complications. The microvascular complications can be analyzed using the Nailfold capillaroscopy, a non-invasive technique that allows for the visualization and analysis of capillaries in the proximal nailfold area. Using advanced video capillaroscopy with high magnification, capillary images can be captured from and processed to analyze their morphology. The capillary images of normal group and diabetic group are acquired from 118 participants using nailfold capillaroscopy and the obtained images are preprocessed using image processing filters. The identification and segmentation of the capillaries are the challenges to be addressed in the processing of the images. Hence segmentation of capillaries is done using morphological operations, thresholding and convolutional neural networks. The performance of the filters and segmentation methods are evaluated using Mean Square Error (MSE), Peak signal to Noise Ratio (PSNR), Structural Similarity Index Measure (SSIM), Jaccard Index and Sorensen coefficient. By analyzing the morphological features namely the capillary diameter, density, distribution, presence of hemorrhage and the shape of the capillaries from both the groups, the capillary changes associated with diabetic condition were studied. It was found that the non diabetic participants considered in this study has capillary diameter in the range of 8-14 µm and the capillary density in the range of 10-30 capillaries per mm2 whereas the diabetic participants has capillary diameter greater than 30 µm and the capillary density is less than 10 capillaries per mm2. In addition to capillary density and diameter, the presence of hemorrhage, the orientation and distribution of the capillaries are also considered to differentiate the diabetic group from the non diabetic group. The classification of the participants are validated with the clinical history of the participants.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Institution of Mechanical Engineers. Part H, Journal of engineering in medicine
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.