Abstract
In recent years, shield tunneling has shown many advantages with the development of underground rail traffic. Geological exploration plays a significant role in tunnel engineering, and detailed geological exploration results can guide the successful construction of a tunnel. This research relies on a super large-diameter shield tunnel construction, using microtremor exploration technology to collect data onsite. Combined with a comparative analysis of the borehole surveying, the reliability of microtremor exploration technology is verified. Moreover, the monitoring result of the impact of large-diameter slurry balanced shield construction on the surrounding environment is analyzed. The results show that microtremor exploration can obtain geological details that traditional detection methods cannot obtain, which can predict the possible local geology mutation in front of the tunnel in advance. The law of surface settlement curve conforms to the Peck formula. This can be divided into five stages: micro deformation, extrusion uplift, reciprocating uplift, detachment settlement, and consolidation settlement. The surface settlement on the eccentric loads side is more prominent. The maximum pressure outside the tunnel segment appears on the lower side of the monitoring section, approximately 0.41 MPa, which will increase with the grouting pressure and become stable in five days.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.