Abstract
The hydrogen sintering and phase transformation (HSPT) process is a powder metallurgy method that produces Ti-6Al-4V with fatigue properties rivaling wrought processed Ti-6Al-4V. Previous fatigue work on HSPT Ti-6Al-4V has shown failure to be frequently caused by microstructural facets, which were believed to be grain boundary (GB) α phase. This belief conflicts with other reports as fatigue failure typically occurs across α colonies or primary α grains, not GB α. In this work, electron backscattered diffraction is used to identify these facets as GB α. Furthermore, a simple geometric model predicting the effective slip length of GB α is presented.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.