Abstract

Pacific threadfin, Polydactylus sexfilis, is popular fish in recreational fishing, as well as aquaculture in Hawaii. Its natural population has been continuously declining in the past several decades. Microsatellite DNA markers are useful DNA-based tool for monitoring Pacific threadfin populations. In this study, fifteen Microsatellite (MS) DNA markers were identified from a partial genomic Pacific threadfin DNA library enriched in CA repeats, and six highly-polymorphic microsatellite loci were employed to analyze genetic similarity and differences between the wild population and hatchery population in Oahu Island. A total of 37 alleles were detected at the six MS loci in the two populations. Statistical analysis of fixation index (F(ST)) and analysis of molecular variance (AMOVA) showed no genetic differentiation between the wild and hatchery populations (F(ST) = 0.001, CI(95%) = -0.01-0.021). Both high genetic diversity (H(o) = 0.664-0.674 and H(e) = 0.710-0.715) and Hardy-Weinberg equilibrium were observed in the wild and hatchery populations. Results of genetic bottleneck analysis indicated that the hatchery was founded with sufficient numbers of brooders as inbreeding coefficient is very low (F(IS) = 0.052-0.072) in both wild and hatchery populations. Further studies are needed for comprehensive determinations of genetic varieties of primary founder broodstocks and successive offspring of the hatchery and wild populations with increased number of Pacific threadfin sample collections.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call