Abstract
Four commercial gas diffusion layers (GDLs) are applied to high-temperature polymer electrolyte fuel cell anodes to investigate the relationship between microporous layer (MPL) properties and the performance of membrane electrode assembly. Subsequently, the physical properties such as the crack area and porosity of the MPL are analyzed via various methods. It is found that the capillary pressure of phosphoric acid (PA) from several theories is inversely related to the mass transfer capability (MTC) of the MPL. Finally, a new transport property named PA MTC of the MPL is proposed using the PA capillary pressure and MTC in MPL. The results indicate that the voltage at both low and high current densities increases separately as the PA MTC in the MPL adjusts to 0.5 MPa mm-1. Subsequently, the voltage beyond 0.5 MPa mm-1 increases in low current density contrary to the voltage at a high current density.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.