Abstract

The resistance mechanism of microbial communities in contaminated groundwater under the combined stress of sulfonamide antibiotics (SAs), NH4+, and Fe-Mn exceeding the standard levels was studied in an agricultural area along the Songhua River in Northeast China with developed livestock and poultry breeding. Representative points were selected in the study area to explore the response of environmental parameters and microbial communities, and microscopic experiments with different SA concentrations were conducted with background groundwater. The results showed a complex relationship between microbial communities and environmental factors. The environmental factors SM, SM2, SMX, DOC, NO3−, Fe, Mn, and HCO3− significantly affected the microbial community, with SMX, DOC, and Mn having the greatest effect. Three types of antibiotics with similar properties had different effects on the microbial community, and these effects were not simply additive or superimposed. After adding SAs, Proteobacteria with multi-resistance (99.85%) became the dominant phylum, and Acinetobacter (98.68%) became the dominant genus with SA resistance. SAs have a significant influence on bacterial chemotaxis, transporters, substance transport, and metabolism. Microorganisms resist the influence of SAs via a series of resistance mechanisms, such as enhancing the synthesis of relevant enzymes, generating new biochemical reactions, and reducing the transport of harmful substances through cell membranes. We also found that the proportion of exogenous compound degradation and metabolism-related functional genes in the presence of high SA concentrations increased significantly, which may be related to the degradation of SAs by microorganisms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.