Abstract

AbstractThis article presents an analytical study on magnetohydrodynamic micropolar nanofluid flow through parallel, coaxial discs filled with a porous medium with uniform blowing from the upper plate. Three different types of nanoparticles, namely copper, aluminum oxide, and titanium dioxide are considered with water and used as base fluids. The governing equations are solved via Differential Transformation Method. The validity of this method has been verified with the results of numerical solution (fourth‐order Runge‐Kutta scheme). The analytical investigation is carried out for different governing parameters. The results indicate that skin friction coefficient has a direct relationship with Hartmann number and the micropolar parameter. It is also found that Nusselt number is increased with increment in Prandtl number and Eckert number. Additionally, this analysis concluded that an increase in volume fraction of nanofluid increases the Nusselt number on the top plate and decreases it on the lower plate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.