Abstract

We study the structure of a methane–air edge flame stabilized against an incoming mixing layer. The flame is computed using detailed chemical kinetics, and the analysis is based on computational singular perturbation theory. We focus on examination of the dynamical fast/slow structure of the flame, exploring the distribution of time-scales, the composition of the related specific modes and the effective low-dimensional structure. We also study the importance of chemical/transport processes for both major species and radicals in the flame, analyzing the information available from slow/fast importance indices as compared to reaction flux analysis. Results provide enhanced understanding of the flame, outlining the role of different chemical and transport processes in its observed structure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.