Abstract
A comprehensive analysis of clustering techniques is presented in this paper through their application to data on meteorological conditions. Six partitional and hierarchical clustering techniques (k-means, k-medoids, SOM k-means, Agglomerative Hierarchical Clustering, and Clustering based on Gaussian Mixture Models) with different distance criteria, together with some clustering evaluation measures (Calinski–Harabasz, Davies–Bouldin, Gap and Silhouette criterion clustering evaluation object), present various analyses of the main climatic zones in Spain. Real-life data sets, recorded by AEMET (Spanish Meteorological Agency) at four of its weather stations, are analyzed in order to characterize the actual weather conditions at each location. The clustering techniques process the data on some of the main daily meteorological variables collected at these stations over six years between 2004 and 2010.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.