Abstract

Red seabream (Pagrus major), a migratory fish, is characterized by high protein levels in the muscle. South Korean and Japanese red seabreams have a general distribution pattern; however, distinguishing them based on their geographical origin is difficult. In this study, we used capillary electrophoresis time-of-flight mass spectrometry (CE-TOF/MS) to analyze the red seabream muscle metabolome to investigate how can distinguish the origin of the fish. The metabolites were extracted using 50% acetonitrile in water. Chromatographic separation was successfully used to classify the metabolite profiles of Japanese and South Korean red seabream. Principal component analysis and hierarchical cluster analysis showed good ability to categorize the samples according to their origin. Amino acids showed the greatest quantitative difference in South Korean and Japanese muscle samples. Specifically, the L-alanine, L-glutamic acid, L-isoleucine, dimethylglycine, and L-valine levels in Japanese red seabream samples were significantly higher than those in South Korean samples. In contrast, the levels of trimethylamine N-oxide and inosine monophosphate in South Korean muscle samples were significantly higher than those in Japanese red muscle samples. The monitored metabolite profiles suggest that South Korean and Japanese red seabreams can be identified on the basis of amino acid levels.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call