Abstract

The machining of hardened steel is characterized by a segmented chip formation. The segmentation is often referred to thermoplastic instabilities or material damage. In this paper the mechanisms for shear band initiation are analyzed and discussed through experimental and simulative investigations. The hardened low alloy steel 51CrV4+Q is machined in an orthogonal cutting process. The chips reveal signs of ductile damage and white layer shear bands. By Finite-Element chip formation simulations the conditions within the primary shear zone are analyzed and based on this an appropriate ductile fracture model for the simulation of shear bands and segmented chips is presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.