Abstract

BackgroundTo improve the developmental competence of in vitro cultured oocytes, extensive literature focused on maturation rate improvement with different additives in culture medium, while studies investigating the maturation dynamics of oocytes during in vitro maturation (IVM) and the influencing factors on oocyte viability are scarce.MethodsThe study involved a retrospective observation by time-lapse monitoring of the IVM process of 157 donated GV oocytes from 59 infertile couples receiving ICSI in 2019, in Tongji Hospital, Wuhan, China. The GV oocytes derived from controlled ovarian hyperstimulation (COH) cycles underwent rescue IVM (R-IVM), and the maturation dynamics, including GVBD time (GV-MI), time from GVBD to maturation (MI-MII), maturation time (GV-MII), and MII arrest duration (MII-ICSI), were recorded by time-lapse monitoring. The matured oocytes were inseminated at different MII arrest points and subsequent embryo developments were assessed. The effects of baseline clinical characteristics, oocyte diameters, and maturation dynamics on the developmental competence of the oocytes were also analyzed.ResultsTotally, 157 GV oocytes were collected. GVBD happened in 111 oocytes, with a median GV-MI duration of 3.7 h. The median MI-MII duration was 15.6 h and the median GV-MII duration was 19.5 h. The maturation rate reached 56.7% at 24 h and 66.9% at 48 h, and the clinical factors, including patient age, FSH level, AMH level, ovarian stimulation protocol, and serum estradiol and progesterone levels on hCG trigger day, showed no effects on the 24-h maturation rate. The normal fertilization rate of oocytes resuming meiosis within 8 h and matured within 24 h was significantly higher than that of oocytes resuming meiosis after 8 h and matured after 24 h. Furthermore, among those oocytes matured within 24 h, the high-quality embryo formation rate of oocytes resuming meiosis within 4.5 h and matured within 19 h was significantly higher. All stated time was measured from the start point of IVM. Additionally, for oocytes from patients with serum progesterone levels less than 1 ng/ml on hCG trigger day, the high-quality embryo formation rate was significantly increased.ConclusionR-IVM technology could increase the available embryos for patients in routine COH cycles, but excessive culture beyond 24 h is not recommended. GV-MI duration of the oocyte, recorded by time-lapse system, and serum progesterone levels of patients on hCG trigger day can significantly affect the developmental potential of the IVM oocytes.

Highlights

  • In vitro maturation (IVM) of oocytes is a rapidly developing technique in the past three decades, which could be broadly divided into two categories based on the different sources of immature oocytes [1]

  • The classical in vitro maturation (IVM) implies that the immature oocytes are obtained in natural cycles without any hormone treatments or with minimal stimulation and cultured to maturation in vitro, which is applicable for the patients with polycystic ovary syndrome (PCOS) during assisted reproductive technology (ART), to reduce the risk of ovarian hyperstimulation syndrome (OHSS), and for fertility preservation of patients with cancer, especially the ones with contraindications to hormone use

  • A total of 157 germinal vesicle (GV) oocytes were collected in 59 intracytoplasmic sperm injection (ICSI) cycles from 59 patients, with a mean age of 31.8 years and a mean body mass index (BMI) of 21.1 kg/m2

Read more

Summary

Introduction

In vitro maturation (IVM) of oocytes is a rapidly developing technique in the past three decades, which could be broadly divided into two categories based on the different sources of immature oocytes [1]. The classical IVM implies that the immature oocytes are obtained in natural cycles without any hormone treatments or with minimal stimulation and cultured to maturation in vitro, which is applicable for the patients with polycystic ovary syndrome (PCOS) during assisted reproductive technology (ART), to reduce the risk of ovarian hyperstimulation syndrome (OHSS), and for fertility preservation of patients with cancer, especially the ones with contraindications to hormone use Another type of IVM implies the in vitro culture of oocytes that failed to mature in vivo during conventional ovarian stimulation cycles, aiming to increase the available embryo rate in ART and improve the success rate, known as rescue IVM (R-IVM) [2, 3]. To improve the developmental competence of in vitro cultured oocytes, extensive literature focused on maturation rate improvement with different additives in culture medium, while studies investigating the maturation dynamics of oocytes during in vitro maturation (IVM) and the influencing factors on oocyte viability are scarce

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call