Abstract

AbstractIn this study, the micromechanical scratch behavior of unidirectional glass fiber reinforced polyester (GFRP) using several wear conditions was highlighted. Single-indenter scratch tests (SSTs) were carried out on GFRP composite material perpendicular (SST⊥) and parallel (SST//) to fiber direction. Damage modes dominating the material removal process (MRP) and friction exhibit significant sensitivity to both attack angle and normal load. From findings, damage modes and apparent friction coefficient substantially accentuate when increasing the attack angle. The inspections of the damage state at different testing conditions using a scanning electron microscope (SEM) reveal the dominating modes governing the MRP through the different phases. The response surface methodology (RSM) was adopted to develop a mathematical model based on the measured data. The RSM approach was found very promoting for predicting friction evolution versus attack angle and normal load. The proposed model reveals good ability not only in predicting apparent friction coefficient but also in detecting separately its ploughing and adhesive component. To emphasize the correlation between friction coefficient and MRP, the wear maps have been drawn up.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call