Abstract

Abstract : Learning and adaptation are considered to be stochastic in nature by most modern psychologists and by many engineers. Markov chains are among the simplest and best understood models of stochastic processes and, in recent years, have frequently found application as models of adaptive processes. A number of new techniques are developed for the analysis of synchronous and asynchronous Markov chains, with emphasis on the problems encountered in the use of these chains as models of adaptive processes. Signal flow analysis yields simplified computations of asymptotic success probabilities, delay times, and other indices of performance. The techniques are illustrated by several examples of adaptive processes. These examples yield further insight into the relations between adaptation and feedback. (Author)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.