Abstract

The present study analyzes the heat transfer in the flow of copper---water nanofluids between parallel plates. For effective thermal conductivity of nanofluids, Hamilton and Crosser's model has been utilized to examine the flow by considering different shape factors. By employing the suitable similarity transformations, the equations governing the flow are transformed into a set of nonlinear ordinary differential equations. The resulting set of equations is solved numerically with the help of Runge---Kutta---Fehlberg numerical scheme. The graphical simulation presents the analysis of variations, in velocity and temperature profiles, for emerging parameters. A comprehensive discussion also accompanies the graphical results. Moreover, the effects of relevant parameters, on skin friction coefficient and Nusselt number, are highlighted graphically. It is noticed that the velocity field is an increasing function of all the parameters involved. Furthermore, the temperature of the fluid is maximum for the platelet-shaped particles followed by the cylinder- and brick-shaped particles.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.