Abstract

Turbulence in astrophysical and space plasmas is dominated by the nonlinear interaction of counter propagating Alfvén waves. Most Alfvén wave turbulence theories have been based on ideal plasma models for Alfvén waves at large scales. However, in the inertial Alfvén wave regime, relevant to magnetospheric plasmas, how the turbulent nonlinear interactions are modified by the dispersive nature of the waves remains to be explored. Here, we present the first laboratory evidence of the nonlinear interaction in the inertial regime. A comparison is made with the theory for MHD Alfvén waves.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.