Abstract

Production of lutetium-177 using direct nuclear reaction 176Lu(n,γ)177Lu by WWR-K reactor neutrons on enriched LuCl3 (up to 82% of 176Lu) is described. Calculations were performed by MCNP6 transport code. Two different irradiation positions of the WWR-K research reactor were considered. Estimates of the maximum specific activity of the luthetium-177 are obtained for the reactor irradiation positions located: (a) in the reactor core centre, (b) in the core periphery. In these positions, thermal neutron flux is two times different.Experimental data was shown that k-factor is 1.5 for considered irradiation positions. The study shows that for the position located in the core center, the estimated maximum specific activity of lutetium-177 is 819 GBq/mg, is to be achieved after 15 days of irradiation. For the position located in the core periphery, specific activity of lutetium-177 is 561 GBq/mg, is to be achieved after 20 days of irradiation. Ratio of Lu-177m to Lu-177 specific activity is not more than 0.025 for both irradiation positions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.