Abstract

Abstract Eu3+ doped Lu2Ti2O7 particles of 6 to 10 nm in diameter are prepared by Pechini-type polymerized complex route based on polyesterification between citric acid (CA) and ethylene glycol. X-ray diffraction measurements confirmed that Eu3+ doped Lu2Ti2O7 powders crystallized in the face-centered cubic lattice (Fd3m). Emission spectra displayed characteristic 5D0 →7 FJ (J = 0, 1, 2, 3 and 4) spin forbidden f-f electronic transitions of the Eu3+ ions with the most pronounced emission coming from 5D0 →7 F2 and with the emission decays varying between 0.75 and 0.60 ms for samples doped with different concentration of Eu3+. The Judd-Ofelt theory was applied to the experimental data for the quantitative determination of optical parameters such as Ω2, Ω4 Judd-Ofelt parameters, radiative and nonradiative transition rates and emission quantum efficiency. It was observed that, for all the samples, Ω2 >> Ω4. The luminescence quantum yields were calculated by means of the Judd-Ofelt theory and the highest value 60.83 % is obtained for particles doped with concentration of 3 % Eu3+.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.