Abstract

The time discrete scheme of characteristics type is especially effective for convection-dominated diffusion problems. The scheme has been used in various engineering areas with different approximations in spatial direction. The lowest-order mixed method is the most popular one for miscible flow in porous media. The method is based on a linear Lagrange approximation to the concentration and the zero-order Raviart-Thomas approximation to the pressure/velocity. However, the optimal error estimate for the lowest-order characteristics-mixed FEM has not been presented although numerous effort has been made in last several decades. In all previous works, only first-order accuracy in spatial direction was proved under certain time-step and mesh size restrictions. The main purpose of this paper is to establish optimal error estimates, $i.e.$, the second-order in $L^2$-norm for the concentration and the first-order for the pressure/velocity, while the concentration is more important physical component for the underlying model. For this purpose, an elliptic quasi-projection is introduced in our analysis to clean up the pollution of the numerical velocity through the nonlinear dispersion-diffusion tensor and the concentration-dependent viscosity. Moreover, the numerical pressure/velocity of the second-order accuracy can be obtained by re-solving the (elliptic) pressure equation at a given time level with a higher-order approximation. Numerical results are presented to confirm our theoretical analysis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call