Abstract

The formation and growth of transitional separation bubbles can significantly affect boundary-layer development on airfoils operating at low chord Reynolds numbers. Of primary concern is the change in boundary-layer thickness between laminar separation and turbulent reattachment. This can be estimated using semiempirical methods, such as the one devised by Horton (1968), which are based on solutions to the integral forms of the boundary-layer equations. The applicability of these methods at low Reynolds numbers was investigated using hot-wire measurements of bubbles formed on an NACA 66(3)-018 airfoil at chord Reynolds numbers of 50,000-200,000. The momentum thickness growth between separation and transition was found to be similar to that predicted for a laminar half-jet and appears to be influenced by the momentum thickness Reynolds number at separation. This parameter also was found to have a noticeable effect on the Reynolds number based on the length of a bubble's laminar portion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.