Abstract

A method is presented for solving the surface integral equation using the method of moments (MoM) at very low frequencies, which finds applications in geoscience. The nature of the Helmholtz decomposition leads the authors to choose loop-tree basis functions to represent the surface current. Careful analysis of the frequency scaling property of each operator allows them to introduce a frequency normalization scheme to reduce the condition number of the MoM matrix. After frequency normalization, the MoM matrix can be solved using LU decomposition. The poor spectral properties of the matrix, however, makes it ill-suited for an iterative solver. A basis rearrangement is used to improve this property of the MoM matrix. The basis function rearrangement (BFR), which involves inverting the connection matrix, can be viewed as a pre-conditioner. The complexity of BFR is reduced to O(N), allowing this method to be combined with iterative solvers. Both rectilinear and curvilinear patches have been used in the simulations. The use of curvilinear patches reduces the number of unknowns significantly, thereby making the algorithm more efficient. This method is capable of solving Maxwell's equations from quasistatic to electrodynamic frequency range. This capability is of great importance in geophysical applications because the sizes of the simulated objects can range from a small fraction of a wavelength to several wavelengths.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.