Abstract

In this study low-cycle fatigue tests were performed in two AlMgSi aluminium alloys with different chemical composition, namely 6082-T6 and 6060-T6 alloys, using standard round specimens and tube specimens, respectively. The tests were undertaken in strain control with a strain ratio R ε =−1. The cyclic stress–strain curves were determined using one specimen for each imposed strain level. The low-cycle fatigue results are used for the characterisation of the cyclic plastic response and the fatigue live of the alloys. Moreover, the geometry of the hysteresis loops and the occurrence of Masing behaviour are also analysed. The observed behaviour is discussed in terms of the chemical composition of the alloys (Mg 2Si hardening particles and Mn dispersoid content) and fracture mechanisms. Alloy 6060-T6 exhibits nearly ideal Masing behaviour, while alloy 6082-T6 presents significant deviations from the Masing model. The type of cyclic deformation behaviour in AlMgSi alloys seems to be influenced by the dispersoid phase.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.