Abstract

Boost converters are needed in many applications which require the output voltage to be higher than the input voltage. Recently, boost type converters have been applied for industrial applications, and hence it has become an interesting topic of research. Many researchers proposed different impedance source converters with their unique advantages as having a high voltage gain in a small range of duty cycle ratio. However, the thermal behaviour of the semiconductor devices and passive elements in the impedance source converter is an important issue from a reliability point of view and it has not been investigated yet. Therefore, this paper presents a comparison between the conventional boost, the Z-source, and the Y-source converters based on a thermal evaluation of the semiconductors. In addition, the three topologies are also compared with respect to their efficiency. In this study the results show that the boost converter has higher efficiency than the Zsource and Y-source converter for these specific voltage gain of 2 and 4. The operational principle, mathematical derivations, simulation results and final comparisons are presented in this paper.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.