Abstract

BackgroundConnective tissue growth factor (CTGF), is a secreted matricellular factor that has been linked to increased risk of cardiovascular disease in diabetic subjects. Despite the biological role of CTGF in diabetes, it still remains unclear how CTGF expression is regulated. In this study, we aim to identify the clinical parameters that modulate plasma CTGF levels measured longitudinally in type 1 diabetic patients over a period of 10 years. A number of patients had negligible measured values of plasma CTGF that formed a point mass at zero, whereas others had high positive values of CTGF that were measured on a continuous scale. The observed combination of excessive zero and continuous positively distributed non-zero values in the CTGF outcome is referred to as semicontinuous data.MethodsWe propose a novel application of a marginalized two-part model (mTP) extended to accommodate longitudinal semicontinuous data in which the marginal mean is expressed in terms of the covariates and estimates of their effect on the mean responses are generated. The continuous component is assumed to follow distributions that stem from the generalized gamma family whereas the binary measure is analyzed using logistic model and both have correlated random effects. Other approaches including the one- and two-part with uncorrelated and correlated random effects models were also applied and their estimates were all compared.ResultsOur results using the mTP model identified intensive glucose control treatment and smoking as clinical factors that were associated with decreased and increased odds of observing non-zero CTGF values respectively. In addition, hemoglobin A1c, systolic blood pressure, and high density lipoprotein were all shown to be significant risk factors that contribute to increasing CTGF levels. These findings were consistently observed under the mTP model but varied with the distributions for the other models. Accuracy and precision of the mTP model was further validated using simulation studies.ConclusionThe mTP model identified new clinical determinants that modulate the levels of CTGF in diabetic subjects. Applicability of this approach can be extended to other biomarkers measured in patient populations that display a combination of negligible zero and non-zero values.

Highlights

  • Connective tissue growth factor (CTGF), is a secreted matricellular factor that has been linked to increased risk of cardiovascular disease in diabetic subjects

  • Our results showed that hemoglobin A1c (HbA1c), a marker of metabolic control, was significantly associated with CTGF under marginalized two-part model (mTP) model with all 3 distributions

  • In summary, our findings showed that mTP provided stable estimates that are less sensitive to the underlying distributions when compared to the two-part and onepart models

Read more

Summary

Introduction

Connective tissue growth factor (CTGF), is a secreted matricellular factor that has been linked to increased risk of cardiovascular disease in diabetic subjects. Since early pathologic events are similar within small and large vessels, it is postulated that common risk markers and mechanisms that initiate and promote vascular damage are involved One such factor that has been identified as a pathogenic risk determinant for the development of microvascular and cardiovascular complications is connective tissue growth factor (CTGF). Plasma CTGF levels were shown to predict myocardial infraction in type 2 diabetic subjects [10] Taken together, these studies suggest that CTGF may have substantial value both as a pathogenic risk marker of inflammation-induced tissue injury and as a therapeutic target

Objectives
Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.