Abstract

In a typical randomized clinical trial, a continuous variable of interest (e.g., bone density) is measured at baseline and fixed postbaseline time points. The resulting longitudinal data, often incomplete due to dropouts and other reasons, are commonly analyzed using parametric likelihood-based methods that assume multivariate normality of the response vector. If the normality assumption is deemed untenable, then semiparametric methods such as (weighted) generalized estimating equations are considered. We propose an alternate approach in which the missing data problem is tackled using multiple imputation, and each imputed dataset is analyzed using robust regression (M-estimation; Huber, 1973, Annals of Statistics 1, 799-821.) to protect against potential non-normality/outliers in the original or imputed dataset. The robust analysis results from each imputed dataset are combined for overall estimation and inference using either the simple Rubin (1987, Multiple Imputation for Nonresponse in Surveys, New York: Wiley) method, or the more complex but potentially more accurate Robins and Wang (2000, Biometrika 87, 113-124.) method. We use simulations to show that our proposed approach performs at least as well as the standard methods under normality, but is notably better under both elliptically symmetric and asymmetric non-normal distributions. A clinical trial example is used for illustration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.