Abstract

The effects of isothermally long-term and thermal cycling tests on the performance of an ASC type commercial solid oxide fuel cell (SOFC) have been investigated. For the long-term test, the cells were tested over 5000 h in two stages, the first 3000 h and the followed 2000 h, under the different flow rates of hydrogen and air. Regarding the thermal cycling test, 60 cycles in total were also divided into two sections, the temperature ranges of 700 °C to 250 °C and 700 °C to 50 °C were applied for the every single cycle of first 30 cycles and the later 30 cycles, respectively. The results of long-term test show that the average degradation rates for the cell in the first 3000 h and the followed 2000 h under different flow rates of fuel and air are 1.16 and 2.64%/kh, respectively. However, there is only a degradation of 6.6% in voltage for the cell after 60 thermal cycling tests. In addition, it is found that many pores formed in the anode of the cell which caused by the agglomeration of Ni after long-term test. In contrast, the vertical cracks penetrating through the cathode of the cell and the in-plane cracks between the cathode and barrier layer of the cell formed due to the coefficient of thermal expansion (CTE) mismatch after 60 thermal cycling tests.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.