Abstract

The Međimurje region (North Croatia), situated between the Drava and Mura rivers with a slightly elevated hilly area, can be generally characterized as a low-seismicity area. However, macroseismic observations from historical and recent earthquakes indicate that some localities in this region are more prone to damage than others. Significant damage and the observed higher intensities in the Međimurje region after the historical earthquakes of 1738 MLm5.1 (Međimurje) and 1880 ML6.3 (Zagreb), and events that occurred in the instrumental era, 1938 ML5.6 (Koprivnica), 1982 ML4.5 (Ivanec), and the most recent 2020 ML5.5 Zagreb and 2020 ML6.2 Petrinja earthquakes, point to the influence of local site effects. There is a reasonable indication that these earthquakes involved several localized site effects that could explain the increased intensity of half a degree or even up to one degree at certain localities compared to macroseismic modeling for rock condition. To better understand the influence of local site effects in the Međimurje region, the single-station microtremor Horizontal-to-Vertical Spectral Ratio (HVSR) method for subsurface characterization was used. Based on individual measurements, microzonation maps were derived for the Međimurje region to better understand the behavior of ground motion and the influence of local site conditions in comparison to macroseismic intensities and past damage observations. Several local site effects could be interpreted as a main contribution to site amplification and resonance effects due to variations in deep soft-deposit thicknesses overlayed on hard deposits and directional variations in topographical areas that could localize earthquake damage patterns. Correlations of microtremor analysis with intensity observations from historical earthquakes as well with recent earthquakes could help to distinguish local site zones prone to the possible occurrence of higher earthquake damage from nearby and distant earthquakes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.