Abstract
Stochastic local search is a successful technique in diverse areas of combinatorial optimisation and is predominantly applied to hard problems. When dealing with individual instances of hard problems, gathering information about specific properties of instances in a pre-processing phase is helpful for an appropriate parameter adjustment of local search-based procedures. In the present paper, we address parameter estimations in the context of landscapes induced by k-SAT instances: at first, we utilise a sampling method devised by Garnier and Kallel in 2002 for approximations of the number of local maxima in landscapes generated by individual k-SAT instances and a simple neighbourhood relation. The objective function is given by the number of satisfied clauses. The procedure provides good approximations of the actual number of local maxima, with a deviation typically around 10%. Secondly, we provide a method for obtaining upper bounds for the average number of local maxima in k-SAT instances. The method allows us to obtain the upper bound \(2^{n-O(\sqrt{n/k})}\) for the average number of local maxima, if m is in the region of 2k· n/k.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.