Abstract

The aim of this paper is to analyze load-carrying capacity of redundant free-floating space manipulators (FFSM) in trajectory tracking task. Combined with the analysis of influential factors in load-carrying process, evaluation of maximum load-carrying capacity (MLCC) is described as multiconstrained nonlinear programming problem. An efficient algorithm based on repeated line search within discontinuous feasible region is presented to determine MLCC for a given trajectory of the end-effector and corresponding joint path. Then, considering the influence of MLCC caused by different initial configurations for the starting point of given trajectory, a kind of maximum payload initial configuration planning method is proposed by using PSO algorithm. Simulations are performed for a particular trajectory tracking task of the 7-DOF space manipulator, of which MLCC is evaluated quantitatively. By in-depth research of the simulation results, significant gap between the values of MLCC when using different initial configurations is analyzed, and the discontinuity of allowable load-carrying capacity is illustrated. The proposed analytical method can be taken as theoretical foundation of feasibility analysis, trajectory optimization, and optimal control of trajectory tracking task in on-orbit load-carrying operations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.