Abstract

This paper aims to investigate the load distribution and contact stiffness characteristics of the single-nut ball screw pair (SNBSP). First, the transformed relationship of coordinate systems is established. Then, the whole rolling elements load distribution model of the SNBSP is presented. Based on this, the whole rolling elements contact stiffness model is obtained. Applying the Newton–Raphson iterative method to solve the model, the normal force of rolling elements and the contact angles between balls and raceway surface are determined. The calculation results are reasonably consistent with those of the half pitch model. Then, the local contact stiffness and global contact stiffness are obtained. Furthermore, the effects of axial load and structural parameters of the SNBSP on the normal contact force, contact angle, and local and global contact stiffness are discussed using numeric analysis. Finally, a dynamic model of the z-axis feed system with time-varying axial stiffness is established, and the accuracy of the model is verified by experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.