Abstract

Numerical studies are carried out to investigate the liquid‐lubricated herringbone‐grooved journal bearings (HGJBs) performance (such as the pressure and cavitation distribution, load capacity and attitude angle, stability, etc.). Symmetrical and non‐symmetrical HGJBs are studied, respectively, and the herringbone grooves' influence on the stability of HGJBs is analyzed carefully. It was found that the maximum pressure and load capacity increase with the increase of eccentricity ratio while the attitude angle decreases with the increase of eccentricity ratio. The cavitation may occur in the fluid film of journal bearings while the eccentricity ratio increases to some critical value. The area of cavitated region increases with the increase of the eccentricity ratio. For non‐symmetrical HGJBs, the pressure and cavitation distribution is asymmetrical oo.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call