Abstract

Environmental scanning electron microscopy (ESEM) allows the observation of liquids under specific conditions of pressure and temperature. Moreover, when working in the transmission mode, that is in scanning transmission electron microscopy (STEM), nano-objects can be analysed inside a liquid. The contrast in the images is mass-thickness dependent as in STEM-in-TEM (transmission electron microscopy) using closed cells. However, in STEM-in-ESEM, as the liquid-vapour equilibrium is kept dynamically, the thickness of the water droplet remains unknown. In this paper, the contrasts measured in the experimental images are compared with calculations using Monte-Carlo simulations in order to estimate the thickness of water. Two examples are given. On gold nanoparticles, the thickness of a thick film can be estimated thanks to a contrast inversion. On core-shell latex particles, the grey level of the shell compared with those of the core and of the water film gives a relatively precise measurement of the water film thickness.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call